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We develop a computational model to capture the complex, three-dimensional behavior of chemoresponsive
polymer gels undergoing the Belousov-Zhabotinsky reaction. The model combines components of the finite
difference and finite element techniques and is an extension of the two-dimensional gel lattice spring model
recently developed by two of us �V. V. Yashin and A. C. Balazs, J. Chem. Phys. 126, 124707 �2007��. Using
this model, we undertake the first three-dimensional �3D� computational studies of the dynamical behavior of
chemoresponsive BZ gels. For sufficiently large sample sizes and a finite range of reaction parameters, we
observe regular and nonregular oscillations in both the size and shape of the sample that are coupled to the
chemical oscillations. Additionally, we determine the critical values of these reaction parameters at the transi-
tion points between the different types of observed behavior. We also show that the dynamics of the chemo-
responsive gels drastically depends on the boundary conditions at the surface of the sample. This 3D compu-
tational model could provide an effective tool for designing gel-based, responsive systems.
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I. INTRODUCTION

Polymer gels constitute ideal candidates for creating ac-
tive materials that can perform sustained mechanical work.
This distinctive behavior is due to the fact that modulations
in the surrounding solvent can drive a gel to undergo signifi-
cant, rhythmic expansion and contraction �1,2�. The periodic
modulations in the solvent can be introduced through chem-
istry; for example, there are a number of chemical reactions
that lead to periodic variations in the pH of the solution �3,4�.
When a pH-responsive gel is placed within this reactive bath,
the polymer network exhibits pronounced oscillations in vol-
ume and shape. With these rhythmic oscillations, the chemi-
cal reaction in the solution is transduced into mechanical
work. This form of work can be utilized to create pulsatile
drug delivery devices �5� and potentially actuate artificial
muscles �6�.

By developing a more fundamental understanding of this
form of chemomechanical transduction, we can better exploit
the mechanism to design a variety of smart, responsive poly-
mer networks. There have been a number of theoretical mod-
els for probing the behavior of oscillating gels �1,7–10�.
These studies provided significant insight into the factors
that contribute to the regular pulsations. The prior calcula-
tions, however, were carried out effectively in one dimension
�1D� since the systems were assumed to be spherically sym-
metric. While these 1D calculations can describe the volu-
metric changes in the system, they cannot account for
changes in the shape of the sample. Recently, two of us de-
veloped a two-dimensional model for oscillating gels
�11,12�. This “gel lattice spring model” �gLSM� captures the
shape changes and opens up the possibility of uncovering
new morphological transitions within the gels.

In the previous studies �11,12�, we specifically focused on
a particular class of oscillating gels: those undergoing the

Belousov-Zhabotinsky �BZ� reaction. Discovered in the
1950’s, the BZ reaction is now recognized as a cornerstone
of the field of nonlinear dynamical phenomena in chemically
reacting systems �13�. The original reaction occurred in a
fluid. Later, chemically neutral, nonresponsive polymer gels
were used as a medium for BZ reactions in order to suppress
hydrodynamic effects �14�. It was in the late 1990’s when
Yoshida fabricated the first chemoresponsive gel to undergo
the BZ reaction �15�. The BZ gels are unique because the
polymer network can expand and contract periodically with-
out external stimuli �15–20�. This autonomous, self-
oscillatory behavior is due to a ruthenium catalyst, which is
covalently bonded to the polymers. The BZ reaction gener-
ates a periodic oxidation and reduction of the anchored metal
ion, which changes the hydrophilicity of the polymer chains,
and in this way, the chemical oscillations induce the rhyth-
mic swelling and deswelling in the gel �15–20�. Via our 2D
gLSM approach, we were able to uncover �11,12� a rich
variety of spatiotemporal patterns and shape changes that
occurred due to the coupling between chemistry and me-
chanics in these BZ gels.

In another study using the 2D gLSM �21�, we demon-
strated how an applied mechanical compression could be
harnessed to drive an initially nonoscillating BZ gel into the
oscillatory regime, or drive the system from one oscillatory
pattern to another. We isolated a scenario where the applica-
tion of the force caused the material to undergo spontaneous
and autonomous rotation of the entire sample. We also
showed that by initiating a unidirectional, propagating
chemical wave, we could drive the entire gel sample to move
in the opposite direction �12�.

The results of the above 2D simulations pointed to the
possibility that BZ gels could act as a sensing system, which
responds to a local impact by sending a signal �a chemical
wave� throughout the entire sample. In the 2D model, how-
ever, the swelling of the gel in the third �vertical� direction
was constrained to a constant value, so we could only model
the effects of a spatially uniform deformation �e.g., uniform*olk2@pitt.edu
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compression�. To probe the effects of a spatially localized
impact, it was necessary to develop a 3D model, which al-
lows for local variations in the degree of vertical swelling.
Moreover, just as the 2D model of chemoresponsive BZ gels
enabled us to study pattern formation and shape changes that
were not possible in 1D �11,12�, the 3D model could reveal
even richer dynamics of this nonlinear system and unique
three-dimensional shape changes. There are indeed a number
of examples where the nonlinear chemical dynamics in a
deformable medium give rise to unique 3D morphological
changes of this medium. For example, chemomechanical in-
stabilities in responsive gels were experimentally demon-
strated to cause propagating, traveling waves of changes in
volume �22�. As another example, it was recently shown that
the main features of pattern and shape selection in plants
could be viewed as resulting from a coupling of oscillating
chemical dynamics to the three-dimensional surface growth
�23�. In the latter work �23�, researchers utilized a finite el-
ement technique to develop a three-dimensional model that
couples chemical oscillations to a shape selection during the
plant growth.

In the current paper, we extend the 2D gLSM for BZ gels
to three dimensions, allowing us to undertake computational
studies to probe the dynamical behavior of the responsive BZ
gels in 3D and thereby obtain a more complete understand-
ing of the interplay between the finite deformations of a re-
sponsive medium and nonlinear chemical dynamics. The
computational efficiency of the model enables us to simulate
the dynamics of relatively large samples in realistic time
frames. Herein, we determine the effect of the sample size
and the reaction parameters on the behavior of the system.
We also examine how the boundary conditions at the surface
of the sample affect the pattern formation.

In the following section, we first describe the system of
equations that governs the dynamics of responsive BZ gels
�see Sec. II A�. In Sec. II B, we describe how we formulated
the 3D gLSM to solve these continuum equations. Readers
who are more interested in the results than the details of the
methodology can go directly to Sec. II C, where we describe
how we validated this approach. In this subsection, we also
focus on one of the limiting cases that can be solved via an
independent method and compare the latter results with the
findings from the gLSM. Using the validated approach, we
then carried out the studies described in Sec. III. In Sec. IV,
we outline studies that are made possible with this approach.

II. MODEL

A. Governing continuum equations

An experimental example of a BZ gel is the cross-linked
polymer network of poly�N-isopropylacrylamide� �NIPAAm�
in which the catalyst ruthenium tris�2,2�-bipyridine�
�Ru�bpy�3� is anchored onto the polymer chains �15–20�.
This polymer network is swollen in an aqueous solution of
NaBrO3, HNO3, and malonic acid �MA�. While the kinetics
of the BZ reaction involves two dozen variables for the con-
centrations of reactive species, as well as tens of chemical
reactions, it is often successfully described in terms of Field-
Koros-Noyes �FKN� mechanism �24�, which can be reduced

to only three basic processes. The “Oregonator” model is
widely used to describe the FKN mechanism �24,25�. The
Tyson and Fife formulation of the Oregonator model �25�
was recently modified �10� to account explicitly for the effect
of the polymer network on the BZ reaction.

Using this modified Oregonator model �10�, the dynamics
of chemoresponsive gels undergoing the BZ reaction can be
described in terms of the volume fraction of polymer � and
the dimensionless concentrations of the dissolved intermedi-
ate u and the oxidized metal-ion catalyst v. The dimension-
less variables u and v are defined using the parametrization
by Tyson and Fife �25�. We also note that these concentra-
tions are defined with respect to the total volume of the sys-
tem �10–12�. The dynamic behavior of this system is gov-
erned by the following dimensionless equations �details
concerning the derivation of these equations can be found in
Ref. �12��:

d�

dt
= − � � · v�p�, �1�

dv
dt

= − v � · v�p� + �G�u,v,�� , �2�

du

dt
= − u � · v�p� + � · �v�p� u

1 − �
� + � · ��1 − �� �

u

1 − �
�

+ F�u,v,�� . �3�

Here d
dt � �

�t +v�p� ·� denotes the material time derivative as-
sociated with the polymer velocity v�p�, which is defined in
the laboratory coordinate system. We assume that it is solely
the polymer-solvent interdiffusion that contributes to the gel
dynamics and neglect the total velocity of the polymer-
solvent system �12�. Hence, in Eq. �3�, we took into account
that

�v�p� + �1 − ��v�s� � 0, �4�

where v�s� is the velocity of the solvent. The third term on the
right hand side �RHS� of Eq. �3� describes the contribution
from the diffusion flux of the dissolved reagent u �12�. The
functions G�u ,v ,�� and F�u ,v ,�� in Eqs. �2� and �3� de-
scribe the kinetics of the BZ reaction and are based on the
Oregonator model for BZ reactions in solution �25�. These
terms have been modified to explicitly account for the effect
of the polymer on the BZ reaction, namely �10�,

F�u,v,�� = �1 − ��2u − u2 − �1 − ��fv
u − q�1 − ��2

u + q�1 − ��2 , �5�

G�u,v,�� = �1 − ��2u − �1 − ��v . �6�

We note that the stoichiometric factor f and the dimen-
sionless parameters � and q have the same meaning as in the
original Oregonator model �24,25�. The stoichiometric pa-
rameter f effectively specifies the concentration of oxidized
catalyst � within the system in the steady state and affects the
amplitude of the oscillations in the oscillatory state �24�. The
dynamics of the polymer network is assumed to be purely
relaxational �26�, so that the forces acting on the deformed
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gel are balanced by the frictional drag due to the motion of
the solvent. Thus, we can write �12�

� · �̂ = �0
−1��/�0�3/2�v�p� − v�s�� , �7�

where �̂ is the dimensionless stress tensor measured in units
v0

−1T, where v0 is the volume of a monomeric unit, T is
temperature measured in energy units, and �0 is the volume
fraction of the polymer in the undeformed state. The mobility
of the polymer gel in Eq. �7� is characterized by the dimen-
sionless kinetic coefficient �0=T�v0���0�Du�−1, where Du is
the diffusion coefficient and ���� is the polymer-solvent fric-
tion coefficient. Following Ref. �26�, in Eq. �7� we took into
account that ����=���0��� /�0�3/2; this approximation for
the friction coefficient is valid in the semidilute and interme-
diate regimes �i.e., for ��0.5, which is always the case in
the following calculations�.

If the stress tensor �̂ is known, the polymer and solvent
velocities can be calculated from Eqs. �4� and �7�. The stress
tensor can be derived from the energy density of the de-
formed gel U, which consists of the elastic energy density
associated with the deformations Uel and the polymer-solvent
interaction energy density UFH. Thus, we can write U

=Uel�I1 , I3�+UFH�I3�, where I1=trB̂ and I3=det B̂ are the in-

variants of the left Cauchy-Green strain tensor B̂= F̂ · F̂T, F̂ is
the deformation-gradient tensor �27�, and the superscript “T”
stands for the transposition operator. The third invariant I3 is
related to the volume change during the deformation as I3

1/2

=dV /dV0 �27�, where dV0 and dV denote the volumes in the
undeformed and deformed states, respectively.

The elastic energy Uel describes the rubber elasticity of
the crosslinked polymer chains and is proportional to the
crosslink density c0 �the number density of elastic strands in
the undeformed polymer network�. This term can be written
as

Uel =
c0v0

2
�I1 − 3 − ln I3

1/2� . �8�

The energy of the interaction between the polymer and
solvent can be written in the Flory-Huggins form as

UFH = �I3��1 − ��ln�1 − �� + �FH�����1 − �� − �*v�1 − ��� .

�9�

The factor �I3 appears in Eq. �9� because the energy density
is defined with respect to a unit volume in the undeformed
state. Specifically, the local volume fraction of the polymer
in the deformed gel depends on the volume fraction of the
polymer in the undeformed state �0 as �=�0I3

−1/2. The
�FH��� is the polymer-solvent interaction parameter and �*

is an adjustable parameter in the model. With �*�0, the last
term on the RHS of Eq. �9� describes the hydrating effect of
the oxidized metal-ion catalyst on the polymer chains �10�.
This hydrating effect �observed experimentally in Refs.
�15–20�� arises from the inclusion of the Ru�bpy�3 complex,
which changes the phase transition temperature and the
maximum degree of swelling to an extent that depends on
the electric charge of the metal ion �15–17�. By varying the
oxidation state of Ru�bpy�3, it has been shown experimen-

tally that the oxidation of Ru�bpy�3 results in an increase in
the degree of gel swelling �15–20�. In effect, the last term in
Eq. �9� defines the coupling between the chemical and me-
chanical degrees of freedom in the system. Using Eqs. �8�
and �9�, one can derive the following constitutive equation
for the swollen, chemoresponsive polymer gel �12�:

	� = − P��,v�I� + c0v0
�

�0
B� . �10�

Here, I� is the unit tensor and the pressure P�� ,v� is defined
as �12�

P��,v� = 
osm��,v� + c0v0�/2�0, �11�

with the contribution from the osmotic pressure of the poly-
mer being 
osm�� ,v�= I3

−1/2�−UFH+��UFH /��+v�UFH /�v�,
which can be written as �12�


osm = − �� + ln�1 − �� + �����2� + �*v� , �12�

where ����=�0+�1�, according to the expression given in
Ref. �28�. We note that ����=�FH���− �1−����FH��� /��; it
coincides with the Flory-Huggins interaction parameter in
Eq. �9� only when there is no dependence on the polymer
volume fraction, i.e., when �FH=�0.

The gel can attain a steady state if the elastic stresses are
balanced by the osmotic pressure and, simultaneously, the
reaction exhibits a stationary regime for the same system
parameters. More specifically, such stationary solutions
��st ,ust ,vst� can be found by numerically solving the follow-
ing system of equations:

c0v0�	�st

�0

1/3

−
�st

2�0
� = 
osm��st,vst�;

F�ust,vst,�st� = 0; G�ust,vst,�st� = 0. �13�

The left-hand side of the first equation in Eq. �13� represents
an elastic stress, as shown in Ref. �12�. If the solution of the
system of equations in Eq. �13� is known, the corresponding
stationary degree of swelling can be calculated as �st
= ��0 /�st�1/3. It is worth noting that Eq. �13� describes a gel
that swells with no restrictions in all three dimensions.

To simulate the dynamical behavior of this system, we
develop a three-dimensional gel lattice spring model �gLSM�
described in detail below. This approach is an extension of
the 2D gLSM computational technique recently developed
by two of us �11,12�. As discussed below, we tested the
model and confirmed that the simulations are robust and that
the model could readily be used for a wide range of param-
eters. For a set of reference parameters, we chose values
from the available experimental data. In particular, for the
BZ reaction parameters, we set �=0.354 and q=9.52�10−5

�based on the experimental data provided in Ref. �16� and in
Ref. �29�� and for the parameters characterizing the proper-
ties of the gel, we set �0=0.139, and c0=1.3�10−3 �based
on the experimental data provided in Ref. �30��, and �0
=100 �this value is chosen to be the same as in Ref. �12��.
The details of the derivation of these parameters, as well as
actual experimental data used in these derivations, are pro-
vided in Tables I and II of Ref. �12�. For the interaction
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parameters in Eq. �12�, we use �0=0.338 and �1=0.518. To
calculate these values, we use the temperature dependence of
�0 for nonresponsive polymer gels given by Hirotsu in Ref.
�28�, and calculate this value at 20 °C for a gel with the
above values of �0 and c0. We also set �*=0.105; �* is an
adjustable parameter of the model and is chosen to have the
same value as in Refs. �11,12�. For these parameters, the
dimensionless units of time and length in our simulations
correspond to �1 s and �40 
m, respectively �the estimates
are provided in Refs. �11,12��.

B. Formulation of the gLSM model in three dimensions

We represent a 3D element of the reactive gel by a general
linear hexahedral element with the node numbering shown in
Fig. 1 �31–33�. The whole gel sample consists of �Lx−1�
� �Ly −1�� �Lz−1� elements; here Li is the number of nodes
in the i direction, i=x ,y ,z. Within each element m
��i , j ,k�, the concentrations of the dissolved reagent u�m�,
the oxidized metal-ion catalyst v�m�, and the volume frac-
tion of polymer ��m� are taken to be spatially uniform. The
total energy of the deformed sample Utot can be calculated by
summing over the energies of all the deformed elements; that
is, Utot=�3�mU�m�, where U�m� is the energy density of the
deformed element m defined with respect to its volume in
the undeformed state, and � is the linear size of the undis-
torted element. From these energy densities, we can calculate
the forces acting on the nodes of the element. To carry out
the latter calculation and integrate the evolution equation for
v and u �see Eqs. �2� and �3��, we first define a coordinate
system �� ,� ,�� local to this element �as marked in Fig. 1�
and perform all the relevant integrations in this local coordi-
nate system, as detailed in Sec. 1 of the Appendix.

If the coordinates of all the nodes of a given element are
known, we can calculate the volume of this element �see Eq.
�A3� of Sec. 1 of the Appendix� and consequently, determine
the volume fraction of polymer within this element as

��m� =
�3�0

V�m�
, �14�

where � is the linear size of the element in the undistorted
state. If the values of ��m� and v�m� are known within each
element m, we can calculate the forces acting on each node
from all the neighboring elements and the velocities of all
the nodes �see below�. We can then numerically calculate the
new positions of the nodes and the updated values of u and v
according to the evolution equations �2� and �3�, in which the
value of � is expressed through Eq. �14�. In what follows,
we describe each of these steps.

The total force acting on each node contains contributions
from the elastic and osmotic properties of the system.
Namely, it was shown �12� that the total force acting on the
node n of the element m consists of two contributions: the
first, F1,n�m�, originates from the first term on the RHS of
Eq. �8� for the elastic energy, and the second, F2,n�m�, ac-
counts for the isotropic pressure within this element, as de-
fined in Eq. �11�.

The first contribution to the total force acting on the node
n of the element m, the springlike force F1,n�m�, can be

calculated from F1,n�m�=−�U1 /�rn�m�, where U1
=�3�mU1�m� and the summation is made over all the ele-
ments in the sample. The details of the calculation of U1�m�
are provided in Sec. 2 of the Appendix. It can be shown that
this force has the following form:

F1,n�m� =
c0v0�

12 	 �
NN�m��

w�n�,n��rn��m�� − rn�m��

+ �
NNN�m��

�rn��m�� − rn�m��
 . �15�

Here, �NN�m�� and �NNN�m�� represent the respective summa-
tions over all the next-nearest neighbor nodal pairs and next-
next-nearest neighbor nodal pairs belonging to all the neigh-
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FIG. 1. �Color online� Schematic of the 3D element. �a� For
each node, we provide its numbering within the element �1-8� and
its numbering with respect to the entire sample �see frames �red
online� next to each node�. The entire sample consists of Lx�Ly

�Lz nodes. In the underfomed state, the set of indexes i=1¯Lx,
j=1¯Ly, and k=1¯Lz defines the position of the nodes in x, y,
and z directions, correspondingly. Coordinate system local to this
element �� ,� ,�� is marked by gray �green online� arrows. �b�
Forces acting on the node 1 �marked by the gray �green online�
circle� of the element m= �i , j ,k�. The gray arrows �red online�
inside the element mark the spring-like elastic forces acting be-
tween the node 1 and the next-nearest and next-next-nearest neigh-
bors within the same element m �as defined in Eq. �21��. The gray
arrows �blue online� outside of the element mark contributions to
nodal forces from the isotropic pressure within this element �as
defined in Eq. �22��.
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boring elements m� adjacent to the node n of the element m.
We note that if the next-nearest nodes n and n� belong to an
internal face �i.e., a face that belongs to two neighboring
elements�, the springlike force between these nodes should
be accounted for twice in Eq. �15� due to the contributions
from the two adjacent elements. Hence, w�n� ,n�=2 in Eq.
�15� if n and n� belong to an internal face and w�n� ,n�=1 in
Eq. �15� if n and n� belong to a boundary face. We note that
unlike the case of purely two-dimensional deformations �12�,
there is no contribution from the interaction between the
nearest-neighbor nodes in Eq. �15�.

The second contribution to the total force acting on the
node n of the element m, F2,n�m�, accounts for the isotropic
pressure within this element, as defined in Eq. �11� �the deri-
vation is provided in Ref. �12��. In other words, F2,n�m�
includes both the contribution from the osmotic pressure due
to the polymer-solvent interactions �involving �FH and �*�
and the contribution from the elastic energy that was not
accounted for in the calculation of the springlike elastic
forces �Eq. �15��. For a three-dimensional element, this force
can be written in the following form:

F2,n�m� =
1

4�
m�

P���m��,v�m����n1�m��S1�m��

+ n2�m��S2�m�� + n3�m��S3�m��� . �16�

In the above equation, the summation is performed over
all the neighboring elements m� that include the node n of
the element m. The pressure within each element,
P���m�� ,v�m��� is calculated according to Eq. �11�. In Eq.
�16�, the vector ni�face��m�� is the outward normal to the face
i�face� of the element m�, and Si�face� is the area of this face
�for more details, see Sec. 1 of Appendix�. For illustration,
the vectors ni�face��m� are shown in Fig. 1�b� for the chosen
element m��m that includes the node n=1 �marked by the
gray �green online� circle�. In this figure, the faces i�face�
=1, i�face�=2, and i�face�=3 correspond to the �=−1, �=
−1, and �=−1 in the local coordinate system, respectively.

Both contributions to the nodal force acting on the node
n=1 of the element m from within this element are shown
schematically in Fig. 1�b�. The contributions from the spring-
like forces from the interaction between the node n=1 and
the next-nearest and next-next-nearest nodes within the ele-
ment m are marked by red arrows. The contributions from
the forces F2,n�m� are depicted by the corresponding gray
arrows �blue online�, with the contribution from i�face�
marked by F2,n�m , i�face�� �here, i�face�=1,2 ,3�. It is im-
portant to emphasize that the total force acting on the node n
of the element m includes similar contributions from each of
the neighboring elements containing this node if this node is
an internal node �and, correspondingly, if the node 1 is a
corner node, it includes only the contributions to the total
force listed above and depicted in the Fig. 1�.

If the forces acting on the node n of the element m are
known, we can calculate its velocity in the overdamped re-
gime as �11,12�

drn�m�
dt

= Mn�m��F1,n�m� + F2,n�m�� , �17�

here Mn�m� is the mobility of the node. We calculate the
mobility Mn�m� in the same manner as was done for the case

of purely 2D deformations in Ref. �12�; here, however, we
make the appropriate corrections for our 3D system. Namely,
we integrate Eq. �7� over the volume of the element m, and
estimate the integral on the right hand side of this equation
by evaluating the values of the integrand on all the nodes of
the element m. This allows us to calculate the nodal friction
coefficients and consequently, to estimate the mobility of the
node n of the element m in the following form:

Mn�m� = 8
�0

��0

�3

�1 − 
��m��n�
�
��m��n

. �18�

In the above equation, 
��m��n denotes the approximate
value of the polymer volume fraction at the node n of the
element m; to calculate this value, we take an average value
of the ��m�� over all the elements m� adjacent to the node n
of the element m, i.e., for the internal node, 
��m��n

= 1
8�m���m��.
All the above expressions allow us to formulate the dis-

cretized evolution equations for our model. By calculating
the nodal displacements as defined in Eq. �17�, we effec-
tively integrate the first equation of our governing system of
equations �1�–�3� defined above. More specifically, at each
simulation time step �t, we update the positions of all the
nodes as

rn�m,t + �t� = rn�m� + �tMn�m��F1,n�m� + F2,n�m�� ,

�19�

where Mn�m�, F1,n�m�, and F2,n�m� are calculated using
Eqs. �18�, �15�, and �16�, respectively. We then update the
value of the volume fraction of the polymer using Eq. �14�.
In Eq. �19�, rn�m , t+�t� and rn�m� represent the coordinates
of the node n of the element m at simulation times t+�t and
t, respectively.

To simulate the dynamics of the whole system, we also
need to numerically integrate Eqs. �2� and �3�. Below, we
provide the discretized evolution equations that we use to
update the concentrations of the dissolved reagent and the
oxidized metal-ion catalyst in our sample during the time
step �t; in these equations, u�m , t+�t�, v�m , t+�t�, ��m , t
+�t� and u�m�, v�m�, ��m� represent the values of the vari-
ables within the element m at the simulation times t+�t and
t, respectively.

Using Eqs. �2� and �3�, we can write the following:

v�m,t + �t� = v�m� + �t�− v�m�T0�m�

+ �G�u�m�,v�m�,��m��� , �20�

u�m,t + �t� = u�m� + �t�− u�m�T0�m� + T1�m� + T2�m�

+ F�u�m�,v�m�,��m��� , �21�

where the terms T0�m�, T1�m�, and T2�m� are defined in
detail in Sec. 3 of the Appendix below.

To implement different types of boundary conditions for
the concentration u, we define certain “service elements;” a
single layer of these service elements is located outside each
of the faces of the gel sample. For the case of the no-flux
boundary conditions, we update the values of ũ, the normal-
ized concentration of the dissolved reagent �ũ�m�=u�m��1
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−��m��−1�, and � within these service elements at each time
step in such a way that we ensure zero flux of the dissolved
reagent through the surface of the sample �i.e., we set these
values equal to the corresponding values of ũ and � in the
neighboring boundary element within the sample�. Alterna-
tively, if we want to account for a flux of the reactant u
through the surface of the sample, but assume that its value
is kept fixed outside the sample, we correspondingly keep
the value of u fixed at a chosen value within all the service
elements. �For example, u=0 in one of the simulation runs
below.� For simplicity, we assume that the distance between
the centers of the service element and the boundary element
is the same as the distance between the centers of this bound-
ary element and the neighboring internal element within the
sample. We note that in most of the simulations described
below, we use the no-flux boundary conditions.

Finally, we comment on the choice of the simulation time
step �t in Eqs. �19�–�21�. It is known that the BZ reaction
equations are stiff and, correspondingly, a sufficiently small
time step is required to update the values of u and v as the
reaction takes place. On the other hand, our simulations in-
dicated that the terms T1�m� and T2�m� in Eqs. �21�, the
positions of all the nodes �Eq. �19��, and, correspondingly,
the term T0�m� �see Eq. �A8��, can be updated with a larger
time step. Correspondingly, we use two simulation time
steps: the larger value �tX is a time step we use to update the
positions of the nodes �Eq. �19��, the volume fractions of the
polymer �Eq. �14�� and the terms T0�m�, T1�m�, and T2�m�
�Eqs. �A8�, �A9�, and �A11�, respectively�; we use the
smaller value �t to update the values of u and v according to
Eqs. �20� and �21�. �Here, we update reaction terms at each
time step t+�t, while we use the values of T0�m�, T1�m�,
and T2�m� updated with the time step �tX.� The use of two
time steps allows us to speed up the simulation without loos-
ing accuracy; the criteria we use to select an appropriate
factor �tX /�t is that the difference between the simulation
results obtained with the chosen �tX /�t�1 and the results
obtained with �tX=�t is negligibly small. We note that in
Eqs. �19�–�21�, we kept �tX=�t. In the next section, we
provide the actual values of �tX and �t for the chosen sys-
tems parameters and discuss in detail the accuracy of the
simulations using the above approach.

C. Limiting case and validation of the 3D gLSM technique

To test the numerical accuracy and validate the above
approach, we compared a solution obtained via our simula-
tions with the numerical solution for a special, limiting case.
If the sample is sufficiently small and the mobility of the
polymer is sufficently high, the above system of equations
�see Eqs. �1�–�3�� could be significantly simplified. In par-
ticular, we can neglect the contributions from diffusion in
Eq. �3� and assume that the evolution of � follows �is en-
slaved to� the changes in the reactant concentrations. The
latter assumption means that the elastic stress is instante-
neously equilibrated with the osmotic pressure, i.e., the fol-
lowing equation is valid at all times:

c0v0�	 �

�0

1/3

−
�

2�0
� = 
osm��,v� . �22�

By solving Eq. �22�, we obtain the concentration of the oxi-
dized catalyst in this limiting case v�vlim as a function of
the polymer volume fraction �:

vlim = ���*�−1�c0v0�	 �

�0

1/3

−
�

2�0
� + ln�1 − ��

+ � + ��0 + �1���2� . �23�

Therefore, there are only two independent variables and,
correspondingly, we need to solve only two independent evo-
lution equations from the system of Eqs. �1�–�3�. Thus, we
find u and � by solving the following system of equations:

d�

dt
=

�

vlim����dvlim���
dt

− ��G�v=vlim���� , �24�

du

dt
= −

u

1 − �

d�

dt
+ �F�v=vlim���, �25�

where �lim is given by Eq. �23�. By solving Eqs. �24� and
�25� numerically with appropriate initial conditions, we find
the temporal evolution of the volume fraction of the polymer
in this limiting case �lim�t� and, therefore, the degree of
swelling �lim�t�= ��0 /�lim�t��1/3.

The solid line in Fig. 2 shows the numerically obtained
�via MATHEMATICA™ software� values for �lim�t�, while the
open circles show the data obtained from our 3D gLSM ap-
proach described above. In the gLSM simulations, the
sample size was fixed at 2�2�2, which is the smallest
sample size considered here; the dimensionless kinetic coef-
ficient was set to �0=103. In addition, we set the simulation
time steps to �t=10−3 and �tX=5�10−3, and used the same

FIG. 2. �Color online� Evolution in time of the degree of swell-
ing �. The solid line shows the degree of swelling of the sample in
the limiting case of no diffusion and instantenous pressure equili-
bration �corresponding numerical solution is obtained using MATH-

EMATICA™ software�. The circles correspond to the simulations re-
sults obtained using the 3D gLSM model formulated above with f
=0.8, Lx=Ly =Lz=2, and �0=103. The initial conditions in both
cases were chosen as follows: vini=0.185258, uini=0.20931, and
�ini=1.73907.
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parameters and initial conditions as used in solving Eqs. �24�
and �25� �see caption to Fig. 2�. The standard deviations
between the simulation values and the values obtained in the
limiting case via the MATHEMATICA™ software are �5
�10−3, which confirms the high accuracy of the proposed
approach. �To obtain these standard deviation values, we av-
eraged over simulation points taken at time increments equal
to 1 within the time frame t=0 to t=400.� The presence of
these small deviations reflects the fact that while we chose a
high value for the polymer mobility ��0�, the chosen value is
not sufficiently large to meet the underlying assumption in
Eq. �22�. To further test the accuracy of our approach, we
increased the value of the dimensionless kinetic coefficient
to �0=106 and found that the standard deviation between the
values obtained in simulations and the values obtained in the
limiting case decreased to �3�10−4. �The simulations with
such high values of �0 were conducted with the time steps of
�t=10−5 and �tX=5�10−5.�

In the case of larger gel samples, the diffusion of u is
essential, so we used other means to test the accuracy of our
simulations. In particular, we varied the spatial discretization
and compared results obtained at different discretizations.
For the parameters and initial conditions given above �with
f =0.8�, we fixed the dimensionless linear size of the cubic
sample in the undeformed state at S=23 and varied the spa-
tial discretization by taking the length L of the cubic sample
to be 12, 24, 48, and 60 nodes. The respective values of �,
the length of the element’s side in the undistorted state, were
equal to 2.09, 1.00, 0.49, and 0.39. �Here, we calculate �
=S /L for each value of L so that the actual size of the sample
remains the same in all cases.� For all four simulations, we
obtained the evolution of � �averaged over all the elements�.
From data taken within a large time frame �from t=500 to
2500�, we also calculated the period of oscillations � and the
time averaged value of polymer volume fraction 
�̃� �see the
definition below�. The deviation of the values for � and 
�̃�
obtained with ��2.09, �=1.0, and ��0.49 from the cor-
responding values obtained with ��0.39 did not exceed 2,
0.4, and 0.05 %, respectively. In all the simulations presented
below, we fixed �=1, since this spatial discretization al-
lowed us to calculate 
�̃� and � with a sufficiently high ac-
curacy. In all simulations below, we specify the linear size of
the cubic sample by stating the number of nodes in each
direction L; with the above choice of �=1, the linear dimen-
sionless size of the sample in the undeformed state is S=L
−1. And finally, in all the simulations below, we use �t
=10−3 and �tX=5�10−3. The values of � and 
�̃� obtained
with these �t and �tX only deviated from values obtained
with �tX=�t=10−3 by at most 0.005%.

III. RESULTS AND DISCUSSION

In our simulations, we observe that behavior of the gel
depends on the size of the sample. To facilitate the discus-
sion, we first show the graphical output from our 3D gLSM
simulations that illustrates the regular oscillations of a BZ
gel; the size of the sample is 12�12�12 �see Fig. 3� �34�.
In this and the following simulations, we imposed the no-

flux boundary conditions at the surface of the sample �unless
specified otherwise�. The snapshots in Fig. 3 are taken during
one period of oscillation at late times to ensure that the simu-
lations capture the regular, nontransient behavior. Within
these images, the black lines mark the elements and the col-
ors represent the concentration of oxidized catalyst v with
the color bar given in Fig. 3�g�. �The same color scheme is
used throughout this section, however, the values of vmin and
vmax are different in each of the figures and are specified in
the respective figure captions.�

The least swollen sample �Fig. 3�a�� corresponds to the
lowest concentration of oxidized catalyst v. �In the color bar,
yellow corresponds to values close to vmin.� As the concen-
tration of oxidized catalyst increases in the course of BZ
reaction, the sample’s degree of swelling also increases, as
shown in Figs. 3�b�–3�d�. Correspondingly, when v begins to
decrease, the degree of swelling also decreases, as illustrated
in Figs. 3�e� and 3�f�. This is similar to the in-phase sinchro-
nization of chemical and mechanical oscillations observed
experimentally by Yoshida et al. in cubic gel pieces that were
smaller than the characteristic length scale of the chemical
wave �18�.

As initial conditions for the above simulations, we chose
the concentrations of the oxidized catalyst and reagent u to
be randomly distributed around their stationary solutions vst
and ust, respectively �see Eq. �13� above� �35�. Initially, each
element was taken to be a cube with side �st�, where �st was
defined by the value of the stationary solution for the poly-
mer volume fraction �st �see Eq. �13��. We note that we
examined the evolution of the system with different initial
conditions �for example, significantly decreasing and in-
creasing the size of the cubic element� and confirmed that the
late-time oscillations were always identical to the ones
shown in Fig. 3. Thus, for a fixed set of materials parameters
and sample size, the oscillations presented in Fig. 3 do not
depend upon the initial conditions.

In Fig. 4, we plot the evolution of 
u�, 
v�, and 
��, which
are the respective average values of the concentrations of the
reagents, oxidized catalyst and polymer volume fraction, for
the sample shown in Fig. 3. The average values are taken
over all the elements within the sample at each moment of
time. The dots marked �a�− �f� correspond to the images in
Fig. 3, �a�− �f�. In this figure, � marks the period of oscilla-
tions, and �= 
��max− 
��min marks the amplitude of the os-
cillation of 
��. In addition, we define 
�̃� as the average
value of 
�� around which the system oscillates in time, i.e.,

�̃�= �
��max+ 
��min� /2, where 
��max and 
��min are the re-
spective maximum and minimum values of 
�� calculated at
late times when the oscillations are regular. We use the val-
ues of 
�̃� and � to quantitatively characterize the system
undergoing regular, periodic oscillations.

To gain insight into the dependence of the dynamical be-
havior on the size of the sample, we next studied the dynam-
ics of a sample of size 24�24�24; all other parameters
were kept the same as in Fig. 3. The snapshots in Fig. 5 show
the sample’s evolution at late times and reveal that the oscil-
lations are irregular. Moreover, the actual realization of the
dynamic pattern depends on the small random fluctuations in
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the initial conditions. What we observe is analogous to a
fragment of a spiral wave that is typically observed in BZ
reactive systems and the originating point for this wave de-
pends on the small random fluctuations in the initial condi-
tions of the system. If, however, we increase the value of the
stoichiometric factor from f =0.68 �in Figs. 3–5� to f =0.9,
then the gel sample is observed to exhibit the regular peri-
odic oscillations, as shown in Fig. 6.

The above examples illustrate that the behavior of the
system drastically depends on both the stoichiometric factor
f , which is an adjustable parameter of the model, and on the
size of the sample. In the following simulations, we vary f in
the range from 0.4 to 0.95. �The values of f are increased in
increments of 0.05 except in regions close to the critical
points, where we reduced these increments to 0.01 in order
to more precisely define the critical values f* and f**.� Fur-
thermore, we conducted these simulations for four different
sample sizes L�L�L �with L=2, 6, 12, and 24�. For each

FIG. 3. �Color online� Regular oscillations in reactive chemoresponsive gel. The size of the sample is 12�12�12 and the stoichiometric
factor in BZ reaction is f =0.68. Corresponding simulation times are �a� 1761, �b�1770, �c� 1773, �d� 1776, �e�1785, �f� 1788. The minimum
and maximum values for the color bar are vmin=8�10−4 and vmax=0.4166, respectively. �We note that we use the same color bar, �g�, in all
the following images, whereas the values of vmin and vmax are given separately for each figure.�

FIG. 4. �Color online� Evolution of 
u�, 
v�, and 
�� for the
sample shown in Fig. 3. Here, � marks the period of oscillations, �

marks the amplitude of oscillation of 
�� and 
�̃� marks its average
value.

KUKSENOK, YASHIN, AND BALAZS PHYSICAL REVIEW E 78, 041406 �2008�

041406-8



value of f and L, we ran three independent simulations with
different random perturbations in the initial conditions. Each
of these simulations was run for a sufficiently long time �un-
til t=2000� to ensure that the observed behavior is nontran-
sient and robust for the given set of parameters. We note that
the case with L=2 �i.e., the dimensionless linear size of the
sample is 1 in the undeformed state� corresponds to a sample
size that is much smaller than the characteristic diffusion
length in the system. The findings from this series of simu-
lations are summarized in Fig. 7. For the samples undergoing
regular oscillations, we plot the average value of the polymer

volume fraction 
�̃� around which the system oscillates in
time �as defined above�. For the nonoscillatory systems, we
plot the average value of the polymer volume fraction 
��
that the system reaches at late times �because this value re-
mains constant at late times, 
��= 
�̃��. The black dashed
curve represents a stationary solution �st of Eq. �13�. The
value of 
�� in each of the elements reaches its stationary
value �st, when the system is in the nonoscillatory regime,
i.e., when f � f

L
*, where f

L
* is the critical value of the stoichi-

ometric factor. In these cases, 
�� is equal to the respective
value of �st taken at each f and does not depend on the size

FIG. 5. �Color online� Nonregular oscillations in a reactive chemoresponsive gel. The size of the sample is 24�24�24 and the
stoichiometric factor in BZ reaction is f =0.68. Corresponding simulations times are �a� 1761, �b�1764, �c� 1771, �d� 1797. The minimum and
maximum values for the color bar �given in Fig. 3�g�� are vmin=7�10−3 and vmax=0.4342, respectively.

FIG. 6. �Color online� Effect of increasing the value of the stoichiometric factor in BZ reaction on the dynamics of the sample. Here,
f =0.9 and all other papameters are the same as in Fig. 5. Corresponding times are �a� 1761, �b�1764, �c� 1770, �d� 1797. The minimum and
maximum values for the color bar �given in Fig. 3�g�� are vmin=3�10−4 and vmax=0.2470, respectively.
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of the sample. In other words, the black dashed line corre-
sponding to �st coincides with the lines connecting simula-
tion data points for each of the values of L if f � f

L
* �see Fig.

7�.
The above results reveal a rather notable phenomenon:

increasing the size of the sample increases the critical value
of f

L
* �for the range of sizes and the no-flux boundary condi-

tions considered here�. Thus, for example, a sample with L
=2 will exhibit oscillatory behavior at a lower value of f than
a sample with L=12. Consequently, if we consider a system
that encompasses gel samples of different sizes and the stoi-
chiometric factor is set at f = f

12
* , then all samples with a size

smaller than L=12 will undergo regular, nondecaying oscil-
lations, while all samples with L�12 can undergo transient
oscillation, but at late times will always reach the steady
state. This implies that by decreasing the size of the sample
�while keeping no-flux boundary conditions for u on the sur-
face of the sample�, one can induce transitions from the
nonoscillatory to oscillatory regime.

Figure 7 also reveals that for the samples with L�12,
only one critical value f

L
*�L� is observed in the simulations,

so that if f � f
L
*�L�, we observe regular oscillations of the

sample �36�. On the contrary, for the gel samples of larger
sizes �L=24 in Fig. 7�, the simulation results yield two criti-
cal values f

24
* and f

24
**. For f � f

24
* , the system reaches a

steady state at late times and for f � f
24
**, we observe the

regular oscillations. For f
24
* � f � f

24
**, however, the gel

sample undergoes nonregular oscillations; an example of this
behavior is shown in Fig. 5. The open circles in Fig. 7 simply
indicate the general region of the nonregular oscillations for
the sample with L=24 because the calculation of 
�̃� �as
defined above� only applies to regular oscillations. We note
that additional simulations showed that the region of non-
regular oscillations also exists for samples of sizes L=18 and
36.

Finally, the gray dashed line in Fig. 7 �red online� corre-
sponds to the limiting case of a small sample with no diffu-
sion and an instantaneous pressure equilibration �see Sec.
II C�. As we discussed above, we recover this limiting case
in our simulations by setting L=2 and taking a sufficiently
high value for the dimensionless kinetic coefficient �0. For
the simulations in Fig. 7, we set �0=102, and it is for this
reason that the transition point between the steady-state and
the oscillatory regime for L=2 is shifted to a higher f relative
to the transition in the limiting case. If, however, we increase
the mobility to �0=103 or higher, the transition line coin-
cides with the gray dashed line shown in Fig. 7 �red online�.
In other words, a decrease in the mobility of the polymer
results in an increase in the value of f*, so that the sample
with the higher �0 has a larger oscillatory region. �We con-
firmed the latter statement by considering samples with even
smaller values of �0=10 and �0=1�.

We note that for all of the cases of regular oscillations, if
the value of f is close to its critical value above which the
regular oscillations occur �i.e., f

L
* for the smaller sized

samples and f
L
** for the larger samples�, the average value of

the polymer volume fraction around which system oscillates

�̃� is significantly larger than the value corresponding to the
steady-state solution �st. In other words, if we increase the
value of f , the sample becomes much more compressed on
average when the oscillation occurs than when the sample is
in the steady state.

In Fig. 8, for all cases of regular oscillations, we plot the
dependence of the period of oscillation � on the value of f .
Again, the gray dashed line �red online� corresponds to the
solution in the limiting case as defined in Sec. II C and all
the simulation data are represented in the same way as in
Fig. 7. �If we increase the mobility of the polymer so that
�0=103 �or higher� at L=2, we recover the gray dashed line
�red online� in Fig. 8.� Figure 8 illustrates that for all sample

FIG. 7. �Color online� Phase behavior for the gel samples of
various sizes. The sizes of the samples �L�L�L� are provided in
the legend; here we choose L=2,6 ,12 �solid lines� and L=24 �dia-
monds�. Gray dashed line �red online� marked �L represents solu-
tion in the limiting case �no diffusion and � is instantaneously
enslaved to the changes in reactant concentration�.

FIG. 8. �Color online� Period of oscillations for the gel samples
of various sizes. The sizes of the samples �L�L�L� are provided
in the legend �we choose L=2, 6, 12, and 24�. Gray dashed line �red
online� marked �L represents solution in the limiting case �no dif-
fusion and � is instantaneously enslaved to the changes in reactant
concentration�.
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sizes considered here, an increase in f results in a decrease in
the period of oscillations. For a fixed value of f , however, the
dependence of the period on the sample size is more compli-
cated. Figure 8 shows that for the smaller samples �L=2, 6,
and 12�, an increase in size results in an increase in � �at
fixed f�. This increase is more apparent at the lower values of
f within the oscillatory regime, and becomes smaller as the
value of f increases. At the highest values of f considered
here, the periods of oscillation for all the samples of small
sizes �L=2, 6, and 12� are approximately equal and are close
to the value obtained in the limiting case for the same f . If,
however, we further increase the size of the sample �L=24 in
Fig. 8�, the period of oscillation becomes smaller than that of
the smaller samples at fixed f �see black diamonds in Fig. 8�.
Such significant changes in � could be attributed to the
propagation of traveling waves throughout the sample.

Some aspects of the size effect on the dynamical behavior
of BZ gel are similar to features observed experimentally for
spherical, nonresponsive gel beads undergoing the BZ reac-
tion �37�. In particular, the researchers observed �37� a
switching between the “global rhythm” and “traveling wave”
regimes of chemical oscillations as they increased the size of
the spherical bead. For smaller bead sizes, they observed
so-called “global oscillations,” where the reactant concentra-
tions at each moment of time were almost uniform through-
out the sample. This is similar to what we observe for the
small sample sizes, where diffusion is relatively unimportant
�i.e., for L�12�. While for L=12 the concentrations of the
reactants are somewhat nonuniform �as can be seen from Fig.
3�, the effect of diffusion still remains small, i.e., in the
above context, the oscillations can be regarded as “rhyth-
mic.” For the larger bead sizes, they observed traveling
chemical waves within the sample �37�; this is again similar
to what we observe for relatively large values of L, such as
for L=24 in the simulations above. Finally, these researchers
also demonstrated �37� that the frequency of oscillations is
higher for the cases of the traveling waves than for the cases
of rhythmic oscillations. This observation is analogous to
what we observe in Fig. 8, where the period of oscillations is
smaller for L=24 �i.e., the case where we clearly observe
traveling waves propagating throughout in the sample�.

In the next series of simulations, we fix f =0.8 and L
=12, but vary the value of �. We note that the value of � is
proportional to the concentration of the organic species in the
BZ reaction �see the definition of the dimensionless value of
� given in Ref. �12��. More specifically, with respect to the
experiments in Refs. �15–20�, � is proportional to the con-
centration of the malonic acid �MA�. Figure 9�a� illustrates
the evolution of the average degree of swelling for the
samples with �=0.04 and 0.1. The plot shows that the period
of oscillations dramatically decreases with the increase in �.
This trend is also illustrated in Fig. 9�b�, where we plot the
period of oscillations for a range of �. The decrease in the
period of oscillations with an increase in � that is observed in
the simulations is in a qualitative agreement with the experi-
mental results of Yoshida et al. �18–20�. Finally, if we further
increase the value of � �i.e., ��0.9 for the scenario pre-
sented above�, we observe a transition to the nonoscillatory
regime; this observation also agrees qualitatively with ex-
perimental studies �20� where researchers observed a transi-

tion between the oscillatory and nonoscillatory regimes with
an increase of concentration of MA.

Finally, we show that the dynamics of a gel sample de-
pends remarkably on the boundary conditions at the surface
of the sample. As we noted, in all the simulations presented
above, we applied the no-flux boundary conditions for the
dissolved reactant u at the surface of the samples. Such no-
flux boundary conditions correspond, for example, to the
scenario where the entire sample is placed in an impermeable
but very elastic and flexible casing, which does not permit a
flux of reagents in or out of the gel. We can consider another
limiting case; namely, the concentration of u is kept at u=0
outside of the sample and, therefore, there is a diffusive flux
of u through the surface of sample into the outer solution.
�To keep u=0 in this outer solution, one should continuously
remove the reactant u from the solution, as in the continu-
ously stirred tank reactors.�

Figures 10�a�–10�c� shows snapshots of the time evolu-
tion of a sample with u=0 in the outer solution and with a
diffusive flux of u through the surface of the sample. The
images in the left column show the distribution of v within
the entire sample, and the images in the right column show
the distribution of v in the planes that cross through the
center of the sample �i.e., the images on the right allow us to
look “inside” the images on the left�. The simulations show
that sample exhibits regular oscillation, which can be seen
from the temporal evolution of the average swelling of the
sample �see the solid black line in Fig. 10�d��. All the system
parameters �including the initial conditions and the sample
size� are identical to those in Fig. 5; the only difference
between the gel samples in Figs. 5 and 10 is the boundary
conditions. The evolution of the average swelling of the

FIG. 9. �Color online� Effect of varying � on the dynamics of
the sample with L=12 and f =0.8. �a� Evolution in time of the
degree of swelling, �, for �=0.04 and 0.1 as marked in the legend,
respectively. �b� Dependence of the period of oscillations � on �.
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sample in Fig. 5 is also shown in Fig. 10�d� by the solid gray
line �red online�.

Figure 10�d� illustrates that the sample with the no flux
boundary condition undergoes nonregular oscillation and has
a significantly higher degree of swelling than the sample
with the diffusive flux through its boundary. More specifi-
cally, in the case shown in Fig. 10, the diffusion of u through
the surface of the sample creates a gradient of u in the vicin-
ity of the sample’s surface. This gradient, in turn, causes a
decrease in value of the oxidized catalyst v and, therefore, an
effective shrinking of the gel close to the surfaces in the
sample. In other words, even though the initial size of the
samples in Figs. 10 and 5 were chosen to be equal and the
number of nodes was kept fixed at 24�24�24, the actual
average size in Fig. 10 is smaller than in Fig. 5, contributing

to the fact that the oscillations of the sample become regular.
The simulations discussed above illustrate that the type of

oscillations observed in the system, as well as the period and
the amplitude of these oscillations, depend strongly on the
boundary conditions at the surface of the sample. This fact
could potentially open up possibilities for controlling the os-
cillation of the gel by simply changing the concentration of u
in the outside solution.

IV. CONCLUSIONS

We developed an efficient computational approach for
capturing the complex three-dimensional behavior of chemo-
responsive polymer gels undergoing the Belousov-
Zhabotinsky reaction. This computational model combines

FIG. 10. �Color online� Effect of the flux through the surface of the sample �a�–�c�. Evolution of the sample at simulation times �a� 1770,
�b� 1773, �d� 1791. Values for the color bar �given in Fig. 3�g�� are vmin=6�10−5 and vmax=0.3728. �d� Evolution of the average degree of
swelling of the sample in Fig. 5 �gray line� �red online� and in Figs. 10�a�–10�c� �black line�.
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components of the finite difference and finite element tech-
niques and is an extension to a third dimension of the re-
cently developed two-dimensional gLSM model �11,12�.

Using this approach, we observed different types of dy-
namic behavior in this nonlinear system. In particular, we
found that for sufficiently large samples with no-flux bound-
ary conditions �for the dissolved BZ reactant on the surface
of the sample�, both regular and nonregular oscillations in
the size and shape of the sample can occur depending on the
value of the reaction parameters. For smaller sized samples,
however, we only observed regular oscillations or a nonoscil-
latory state.

From our simulations, we isolated critical values of the
stoichiometric factor at which the transitions between differ-
ent types of behavior �regular or nonregular oscillations or
nonoscillatory regime� occur in the cubic gel sample with the
no-flux boundary conditions at the surface. We found that
these critical values depend on the size of the sample. For
example, increasing the size of the sample increases the criti-
cal value of f

L
* that corresponds to the transition between the

nonoscillatory and oscillatory regimes for a sample of size L.
Thus, if one considers a system that encompasses a number
of gel samples of different sizes and the stoichiometric factor
is set at f = f

L
*, then all the samples of a size smaller than L

will undergo regular, nondecaying oscillations, while all the
samples of a size equal to or larger than L will always reach
the steady state. This behavior also implies that by decreas-
ing the size of the sample �for example, by cutting the
sample onto smaller pieces�, one can induce transitions from
the nonoscillatory to the oscillatory regime.

We also examined the oscillations of a cubic gel for two
different types of boundary conditions on the surface on the
sample: in one scenario, we applied no-flux boundary condi-
tions on the dissolved reactant and in the other scenario, we
took into account the flux of the reactant through the surface
of the sample into the outside solution. Our results reveal
that the dynamics and pattern formation in the BZ gels dra-
matically depend on the boundary conditions at the sample’s
surface. These effects could potentially open up possibilities
for controlling the oscillations of the gel by simply changing
the concentration of the reagents in the outside solution.

The findings from our simulations yield significant insight
into the factors that govern the dynamics of these self-
oscillating BZ gels. We note that the autonomous behavior of
the BZ gels provides distinct opportunities for designing
smart, biomimetic systems and devices that can effectively
operate without the use of any external stimuli �38�. To fully
harness the unique properties of these gels, we need funda-
mental studies to identify the critical parameters that control
their properties; the 3D gLSM model developed here could
be an important tool for conducting such studies. Ultimately,
such fundamental studies would allow us to not only design
self-actuating or self-propelled gel-based systems, but also
establish guidelines for maximizing the efficiency and per-
formance of these unique systems.
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APPENDIX

1. Definitions of shape functions and integrals within element
needed to formulate 3D gLSM model

Within each element, we define a local coordinate system
�� ,� ,�� as shown in Fig. 1�a�. The local coordinates within
the element m can be calculated as �31,32�

r�m� = �
n=1

8

Nnrn�m� , �A1�

where rn�m�� (xn�m� ,yn�m� ,zn�m�) gives the coordinates
of node n of the given element m. The Nn are shape func-
tions defined as Nn= 1

8 �1+��n��1+��n��1+��n�, where �n,
�n, and �n are constants equal to �1, depending on the node
n. Specifically, for the node numbering in Fig. 1, the shape
functions have the following explicit form �31�:

N1 =
1

8
�1 − ���1 − ���1 − ��, N2 =

1

8
�1 − ���1 − ���1 + �� ,

N3 =
1

8
�1 + ���1 − ���1 + ��, N4 =

1

8
�1 + ���1 − ���1 − �� ,

N5 =
1

8
�1 − ���1 + ���1 − ��, N6 =

1

8
�1 − ���1 + ���1 + �� ,

N7 =
1

8
�1 + ���1 + ���1 + ��, N8 =

1

8
�1 + ���1 + ���1 − �� .

�A2�

In terms of the local coordinates �� ,� ,��, the positions of the
faces of the element are defined as �= �1, �= �1, and �
= �1.

The volume of the element m can be found by integrating
over the local coordinates as

V�m� = �
−1

1 �
−1

1 �
−1

1

det J�m�d�d�d� , �A3�

where J is the Jacobian matrix �31,32�

J�m� = ��x�m�/�� �y�m�/�� �z�m�/��

�x�m�/�� �y�m�/�� �z�m�/��

�x�m�/�� �y�m�/�� �z�m�/��
� . �A4�

In order to calculate ni�face��m��Si�face��m�� for the face
i�face� of the element m�, we calculate the area of this face
in the local coordinate system using the above definitions of
the shape functions. For example, for face 1 �which is the
bottom face comprising the nodes 1,5,8, and 4 in Fig. 1�, we
calculate n1�m�S1�m� as �32�
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n1�m�S1�m� = ���−1

1 �
−1

1 ��x�m�/��

�y�m�/��

�z�m�/��
�

� ��x�m�/��

�y�m�/��

�z�m�/��
�d�d���

�=−1

, �A5�

where we took into account that the position of the face 1
corresponds to �=−1 in the local coordinate system.

2. Calculations of springlike force F1,n(m) acting on node n of
element m

To obtain F1,n�m�, we calculate the contribution U1
=c0v0I1 /2 from the elastic energy of the deformed elements,
and then differentiate the result with respect to rn�m�. If all
the coordinates of all the nodes of the element rn�m� are
known, the first invariant of the strain tensor can be written
in the local coordinate system for this element m as

I1��,�,�,r�m�� =
4

�2��
n=1

8 	rn�m�
�Nn

��

2

+ �
n=1

8 	rn�m�
�Nn

��

2

+ �
n=1

8 	rn�m�
�Nn

��

2� . �A6�

It can be shown that the exact integration over the volume of
the element m in the local coordinate system for this element
gives the contribution from the above term to the elemental
energy density in the following form:

U1�m� =
c0v0

16
�

−1

1 �
−1

1 �
−1

1

I1��,�,�,r�m��d�d�d�

=
c0v0

24�2	�
NN

�rn�m� − rn��m��2

+ �
NNN

�rn�m� − rn��m��2
 . �A7�

In the equation above, �NN represents a summation over all
the next-nearest-neighbor nodal pairs �n ,n��, and �NNN rep-
resents a summation over all the next-next-nearest-neighbor
nodal pairs �n ,n�� within the element m. For the element
shown in Fig. 1, �NN represents a summation over the pairs
�n ,n�� taking the following values: �2,7�, �3,6�,�4,7�, �3,8�,
�2,5�, �1,6�,�1,3�,�2,4�, �4,5�, �1,8�, �6,8�, �7,5�, and �NNN rep-
resents the summation over the pairs �n ,n�� taking the values
�3,5�, �4,6�, �1,7�, and �2,8�. We note that the contributions
from the interactions between the next-nearest-neighbor
nodes and next-next-nearest-neighboring nodes have the
same weight. Thus, the first term on the right-hand side of
Eq. �A7� is effectively approximated by the elastic energy
stored in the linear springs connecting next-nearest and next-
next-nearest neighbor nodes, with the spring constant being
the same for all the springs.

3. Calculations of the terms T0(m), T1(m), and T2(m) in Eqs.
(20) and (21)

The term T0�m� in Eqs. �20� and �21�, approximates the
value of � ·v�p� calculated within the element m; we calcu-
late this term as

T0�m� = �1 − ��m,t + �t�/��m��/�t , �A8�

where the values ��m� and ��m , t+�t� are calculated using
Eq. �14� based on the values of the rn�m� at the times t and
t+�t, respectively.

The terms T1�m� and T2�m� in Eq. �21� correspond to the
respective second and the third terms in Eq. �3� calculated
within the element m. In order to calculate T1�m�, we inte-
grate the corresponding term in Eq. �3� over the volume of
the element, and then normalize the obtained value by the
volume of this element:

T1�m� =
1

V�m��r�V�m�
dr � · �v�p��m�

u�m�
1 − ��m��

=
1

V�m� �
i �face�=1

6

�� dSi �face�ni �face� · �v�p��m�ũ�m��i �face�.

�A9�

Here, ni�face��m� is the outward normal to the i�face� of the
element m, and Si�face� is the area of this face. In Eq. �A9�, we
introduced the normalized concentration of the dissolved re-
agent as ũ�m�=u�m��1−��m��−1. We note that the values of
the polymer velocity v�p��m� are given only at the nodes of
the element, while the values of the ũ�m� are defined within
the element m. In order to calculate the integral over the
surface of the element m on the right-hand side of Eq. �A9�,
we again integrate in the coordinate system local to this el-
ement using the shape functions as given above. Using the
values of the polymer velocity vn

�p��m� defined at the nodes
of the element, we can calculate the values of the product
v�p��m�ũ�m� in Eq. �A9� within the element m as

v�p��m�ũ�m� = �
n=1

8

Nnvn
�p��m�
ũ�m��n, �A10�

where 
ũ�m��n denotes the value of the ũ�m� at the node n of
the element m; to calculate this value, we take an average
value of the ũ�m�� over all the neighboring elements m� that
include the node n of the element m. Also, we use the shape
functions to write the dSi�face��m�ni�face��m� for each of the
faces of the element �i�face� denotes the face number�. For
example, dS1�m�n1�m� is already provided above and is the
expression under the integral in Eq. �A5� taken at the bottom
face �see Fig. 1�, i.e., at �=−1. With all the above, the inte-
gral in the right-hand-side of Eq. �A10� can be calculated
with no further approximations. We do not provide the final
expression here since it is cumbersome, but we note that we
use the MATHEMATICA™ software package to obtain this ex-
pression and to convert it into our numerical code.
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Finally, we approximate the term T2�m� in Eq. �21�,
which accounts for the diffusion of u in the gel matrix, as

T2�m� = �
l=i,j,k

�− �l��m��lũ�m� + �1 − ��m���l
2ũ�m�� . �A11�

In Eq. �A11�, we calculate the spatial derivatives in the i direction using the following second order centered difference
formulas:

�iu�i, j,k� =
u�i, j,k��ai+1

2 − ai−1
2 � + u�i + 1, j,k�ai−1

2 − u�i − 1, j,k�ai+1
2

ai+1ai−1�ai+1 + ai−1�
, �A12�

�i
2u�i, j,k� = 2

u�i + 1, j,k�ai−1 + u�i − 1, j,k�ai+1 − u�i, j,k��ai−1 + ai+1�
ai+1ai−1�ai+1 + ai−1�

, �A13�

where ai−1 and ai+1 are the distances between the centers of
the elements m= �i , j ,k� and �i−1, j ,k� and �i+1, j ,k�, re-
spectively. The position of the center of the element
rcenter�m�, is taken at the origin of the coordinate system
local to the element m, i.e., at �=0, �=0, �=0; this yields
rcenter�m�= 1

8�n=1
8 rn�m� with the above choice of the shape

functions. We derived Eqs. �A12� and �A13� using the ap-
proximations of the functions u�i+1, j ,k� and u�i−1, j ,k�
obtained by the expansion of these functions into the second

order Taylor polynomials with respect to the corresponding
distances between the neighboring elements. The spatial de-
rivatives in the j and k directions are calculated in the same
manner. We note that for the case of the nondeformed regular
lattice where ai−1=ai+1=a, the above expressions reduce to
the conventional second order centered difference formulas
with equal spacing, i.e., �iu�i , j ,k�= �u�i+1, j ,k�−u�i
−1, j ,k�� /2a and �i

2u�i , j ,k�= �u�i+1, j ,k�+u�i−1, j ,k�
−2u�i , j ,k�� /a2.
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